Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Virol J ; 20(1): 117, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280624

RESUMO

Canine distemper is a highly contagious, often fatal disease caused by canine distemper virus (CDV) in domestic dogs and wild carnivores. The virus has caused mass epidemics in both wild and captive carnivores of high conservation value such as tigers, lions and leopards. Hence, understanding and managing CDV outbreaks is particularly important in Nepal, which is home to many species of threatened wild carnivores including tigers, leopards, snow leopards, dholes and wolves, and also contains a large population of stray dogs. Previous studies have suggested that CDV may pose a threat to wild carnivores, but there have not been any studies characterizing the genetic strains of the virus circulating in Nepal's carnivores. We collected invasive and non-invasive biological samples from stray dogs in Kathmandu Valley and genetically characterized the strains of CDV in the dogs to belong to the Asia-5 lineage by using phylogenetic analysis. The same lineage also contained CDV strains sequenced from dogs, civets, red panda and lions in India. Based on our phylogenetic analysis, we think it is likely that CDV is maintained through sylvatic cycle among sympatric carnivores allowing the recurring spillovers and outbreaks. It is crucial to prevent the virus transmission from reservoir hosts to other species, especially threatened populations of large carnivores in Nepal. Hence, we recommend for regular surveillance of CDV targeting wild carnivores in addition to the domestic dogs.


Assuntos
Carnívoros , Vírus da Cinomose Canina , Cinomose , Leões , Tigres , Animais , Cães , Vírus da Cinomose Canina/genética , Filogenia , Cinomose/epidemiologia
2.
PLoS One ; 18(3): e0270778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36857401

RESUMO

Campylobacter spp. is often underreported and underrated bacteria that present real health risks to both humans and animals, including non-human primates. It is a commensal microorganism of gastrointestinal tract known to cause gastroenteritis in humans. Commonly found in many wild animals including non-human primates (monkeys- Rhesus macaques) these pathogens are known to be a common cause of diarrhea in humans in many parts of developing and under developed countries. Rhesus macaques from the two holy sites in Kathmandu (Pashupati and Swoyambhu) were included in this cross-sectional study. Diarrheal samples of monkeys were analyzed to detect and characterize the pathogen using 16S rRNA-based PCR screening, followed by DNA sequencing and phylogenetic analysis. Out of a total 67 collected diarrheal samples, Campylobacter spp. were detected in the majority of the samples (n = 64; 96%). DNA sequences of the amplified PCR products were successfully obtained from 13 samples. Phylogenetic analysis identified Candidatus Campylobacter infans (n = 10, Kimura-2 parameter (K2P) pairwise distance values of 0.002287). Remaining three sequences might potentially belong to a novel Campylobacter species/sub-species- closely relating to known species of C. helviticus (K2P pairwise distance of 0.0267). Both Candidatus Campylobacter infans and C. helvitucus are known to infect humans and animals. Additionally, we also detected the bacteria in water and soil samples from the sites. Campylobacter spp. caused the 2018 diarrhea outbreak in Rhesus macaques in the Kathmandu valley. Campylobacter might be one of the important contributing pathogens in diarrheal outbreaks-both in humans and animals (monkeys) in Nepal. Due to close interactions of these animals with humans and other animals, One Health approach might be the most effective way to prevent and mitigate the threat posed by this pathogen.


Assuntos
Campylobacter , Diarreia , Animais , Macaca mulatta , Estudos Transversais , Filogenia , RNA Ribossômico 16S , Surtos de Doenças
3.
PLoS One ; 18(3): e0283664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36996055

RESUMO

Understanding disease burden and transmission dynamics in resource-limited, low-income countries like Nepal are often challenging due to inadequate surveillance systems. These issues are exacerbated by limited access to diagnostic and research facilities throughout the country. Nepal has one of the highest COVID-19 case rates (915 cases per 100,000 people) in South Asia, with densely-populated Kathmandu experiencing the highest number of cases. Swiftly identifying case clusters (hotspots) and introducing effective intervention programs is crucial to mounting an effective containment strategy. The rapid identification of circulating SARS-CoV-2 variants can also provide important information on viral evolution and epidemiology. Genomic-based environmental surveillance can help in the early detection of outbreaks before clinical cases are recognized and identify viral micro-diversity that can be used for designing real-time risk-based interventions. This research aimed to develop a genomic-based environmental surveillance system by detecting and characterizing SARS-CoV-2 in sewage samples of Kathmandu using portable next-generation DNA sequencing devices. Out of 22 sites in the Kathmandu Valley from June to August 2020, sewage samples from 16 (80%) sites had detectable SARS-CoV-2. A heatmap was created to visualize the presence of SARS-CoV-2 infection in the community based on viral load intensity and corresponding geospatial data. Further, 47 mutations were observed in the SARS-CoV-2 genome. Some detected mutations (n = 9, 22%) were novel at the time of data analysis and yet to be reported in the global database, with one indicating a frameshift deletion in the spike gene. SNP analysis revealed possibility of assessing circulating major/minor variant diversity on environmental samples based on key mutations. Our study demonstrated the feasibility of rapidly obtaining vital information on community transmission and disease dynamics of SARS-CoV-2 using genomic-based environmental surveillance.


Assuntos
COVID-19 , Esgotos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA